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Abstract
Mangroves are among the most threatened and rapidly vanishing natural environments worldwide.
They provide a wide range of ecosystem services and have recently become known for their
exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-
cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing
market mechanisms to credit mangrove conservation projects for associated CO2 emissions
reductions. These efforts depend on robust and readily applicable, but currently unavailable,
localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28
countries by 61 independent studies, to develop a global predictive model for mangrove soil
carbon. Using climatological and locational data as predictors, we explore several predictive
modeling alternatives, including machine-learning methods. With our predictive model, we
construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution
grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00± 0.94 Pg C
(assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of
carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38MgC ha−1)
is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor
mangroves (approximately 272 ± 49Mg C ha−1). Considerable within country variation in
mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon
stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon
per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from
mangrove conservation and designing mangrove conservation policy. Additionally, the results can
be used to project changes in mangrove soil carbon stocks based on changing climatological
predictors, e.g. to assess the impacts of climate change on mangrove soil carbon stocks.

S Online supplementary data available from stacks.iop.org/ERL/9/104013/mmedia

Keywords: mangroves, blue carbon, REDD, soil carbon, ecosystem services, predictive
modeling

1. Introduction

Mangroves have long been recognized for the broad range of
ecosystem services they provide, including serving as primary

nursery habitat for many species of fish, crustaceans, birds, and
marine mammals, and protecting coastal communities from
coastal erosion and damage from storms and other natural
hazards (Mumby et al 2004, Spalding et al 2010, Twilley
et al 1996, Shepard et al 2011). More recently, mangroves
have also received attention for their capacity to store large
volumes of carbon (Donato et al 2011, Pendleton et al 2012,
Siikamäki et al 2012). For example, on average, mangroves
contain three to four times the mass of carbon typically found
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Siikamäki et al 2012). For example, on average, mangroves
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This analysis adds to the science necessary to design and
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to predict mangrove soil carbon, explaining substantial spatial

variation in the carbon concentrations of global mangrove
soils. Our predictive model is based on a rich dataset of
mangrove soil carbon measurements, including over 900
observations collected in 28 countries throughout the world,
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5. Conclusions

This analysis adds to the science necessary to design and
evaluate mangrove conservation options. We develop a model
to predict mangrove soil carbon, explaining substantial spatial

variation in the carbon concentrations of global mangrove
soils. Our predictive model is based on a rich dataset of
mangrove soil carbon measurements, including over 900
observations collected in 28 countries throughout the world,
which represent the majority of global mangroves. Using

Figure 3. Global map of predicted mangrove soil carbon concentrations.

Figure 4. Map of predicted mangrove soil carbon concentrations for Indonesia (and neighboring countries).
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