

Global controls on carbon storage in mangrove soils

Andre S. Rovai, PhD arovai1@lsu.edu

Global controls on carbon storage in mangrove soils

Global controls on carbon storage in mangrove soils

Andre **Rovai** - LSU (<u>arovai1@lsu.edu</u>)

Robert Twilley - LSU

Edward Castañeda-Moya - FIU

Pablo Riul - UFPB

Miguel Cifuentes-Jara - CATIE

Marilyn Manrow-Villalobos - CATIE

Paulo Horta - UFSC

José Simonassi - UFSC

Alessandra Fonseca - UFSC

Paulo Pagliosa - UFSC

Global controls on carbon storage in mangrove soils

Andre **Rovai** - LSU (<u>arovai1@lsu.edu</u>)

Robert Twilley - LSU

Edward Castañeda-Moya - FIU

Pablo Riul - UFPB

Miguel Cifuentes-Jara - CATIE

Marilyn Manrow-Villalobos - CATIE

Paulo Horta - UFSC

José Simonassi - UFSC

Alessandra Fonseca - UFSC

Paulo **Pagliosa** - UFSC

Global controls on carbon storage in mangrove soils

- **Part 1.** A little bit of context and concept
- **Part 2.** Brief account on the methods
- Part 3. Global controls on C storage in mangrove soils
- Part 4. Wrapping up

Global controls on carbon storage in mangrove soils

- Part 1. A little bit of context and concept
- **Part 2.** Brief account on the methods
- Part 3. Global controls on C storage in mangrove soils
- Part 4. Wrapping up

Journal of Ecology, Vol. 55, No. 2 (Jul., 1967), pp. 301-343

MANGROVE ECOLOGY AND DELTAIC GEOMORPHOLOGY:
TABASCO, MEXICO
BY BRUCE G. THOM

Journal of Ecology, Vol. 63, No. 1 (Mar., 1975), pp. 203-232

MANGROVE ECOLOGY AND DELTAIC-ESTUARINE GEOMORPHOLOGY: CAMBRIDGE GULF-ORD RIVER, WESTERN AUSTRALIA

BY BRUCE G. THOM*, L. D. WRIGHT†‡ AND J. M. COLEMAN†

Proceedings of the Australian National Mangrove Workshop Australian Institute of Marine Science Cape Ferguson 18-20 April 1979

MANGROVE ECOSYSTEMS
IN AUSTRALIA Structure, function and management

Mangrove Ecology – A Geomorphological Perspective B.G. Thom

Bruce G. THOM

Pacific Science (1987), vol. 41, nos. 1-4

Pacific Island Mangroves: Distribution and Environmental Settings COLIN D. WOODROFFE

Journal of Biogeography (1991) 18, 479-492

Mangrove biogeography:

the role of Quaternary environmental and sea-level change COLIN D. WOODROFFE and JOHN GRINDROD:

Coastal and Estuarine Studies

Tropical Mangrove Ecosystems

Vol. 41

Mangrove Sediments and GeomorphologyColin Woodroffe

Mangrove Sedimentation and Response to Relative Sea-Level Rise

C.D. Woodroffe, K. Rogers, K.L. McKee, C.E. Lovelock, I.A. Mendelssohn, and N. Saintilan

Colin D. WOODROFFE

THOM'S Environmental Settings For Mangroves

2. Tide-dominated allochthonous

3. Wave-dominated barrier lagoon (autochthonous)

4. Composite-river and wave dominated

5. Drowned bedrock valley

Thom (1982)

WOODROFFE'S Environmental Settings For Mangroves

A. River dominated

B. Tide dominated

C. Wave dominated

D. Composite river and wave dominated

E. Drowned bedrock valley

Woodroffe (1992)

WOODROFFE'S Environmental Settings For Mangroves

A. River dominated

B. Tide dominated

C. Wave dominated

D. Composite river and wave dominated

E. Drowned bedrock valley

Woodroffe (1992)

THOM'S + WOODROFFE'S Environmental Settings For Mangroves

Robert R. TWILLEY

PROPERTIES OF MANGROVE ECOSYSTEMS RELATED TO THE ENERGY SIGNATURE OF COASTAL ENVIRONMENTS

Robert R. Twilley

PROPERTIES OF MANGROVE ECOSYSTEMS RELATED TO THE ENERGY SIGNATURE OF COASTAL ENVIRONMENTS

Robert R. Twilley

Twilley et al. (2017)

COASTAL PROCESSES

H1. Geophysical forcings, along with regional climate, shape distinct Coastal Environmental Settings (CES)

- ₱ H1. Geophysical forcings, along with regional climate, shape distinct Coastal Environmental Settings (CES)
 - H2. Global patterns of soil C:N:P ecological stoichiometry are driven by geophysical and climatic forcing functions

- H1. Geophysical forcings, along with regional climate, shape distinct Coastal Environmental Settings (CES)
 - H2. Global patterns of soil C:N:P ecological stoichiometry are driven by geophysical and climatic forcing functions
 - H3. Geophysical and climatic drivers explain global variability in mangrove Soil Organic Carbon (SOC) stocks

Global controls on carbon storage in mangrove soils

- Part 1. A little bit of context and concept
- **Part 2.** Brief account on the methods
- Part 3. Global controls on C storage in mangrove soils
- Part 4. Wrapping up

XXX cells (0.25 degrees)

- **√** River
- √ Tides
- ✓ Temp.
- ✓ Precip.
- ✓ PET

From Carrère et al. (2012), Fekete et al (2002), Hijmans et al. (2005), Mu et al. (2011)

Global controls on carbon storage in mangrove soils

- Part 1. A little bit of context and concept
- **Part 2.** Brief account on the methods
- Part 3. Global controls on C storage in mangrove soils
- Part 4. Wrapping up

nMDS

- ✓ C:N, N:P stoichiometry
- \checkmark BD (g cm⁻³)

RIVER

NO RIVER

DELTAS - BEDROCK - LAGOON - ESTUARIES - COMPOSITE - CARBONATE

RIVER

NO RIVER

Sediment-poor

DELTAS - BEDROCK - LAGOON - ESTUARIES - COMPOSITE - CARBONATE

IOP Publishing

Environ. Res. Lett. 9 (2014) 104013 (9pp)

A global predictive model of carbon in mangrove soils

Sunny L Jardine¹ and Juha V Siikamäki²

Global patterns in mangrove soil carbon stocks and losses

Atwood et al. (2017)

OPEN ACCESS

IOP Publishing

Environ. Res. Lett. 9 (2014) 104013 (9pp)

A global predictive model of carbon in mangrove soils

Sunny L Jardine¹ and Juha V Siikamäki²

Global patterns in mangrove soil carbon stocks and losses

Atwood et al. (2017)

IOP Publishing

Environ. Res. Lett. 9 (2014) 104013 (9pp)

A global predictive model of carbon in mangrove soils

Sunny L Jardine¹ and Juha V Siikamäki²

Global patterns in mangrove soil carbon stocks and losses

Atwood et al. (2017)

DT = DELTAS
BR = BEDROCK
LG = LAGOON
ET = ESTUARIES
CP = COMPOSITE
CT = CARBONATE

DT = DELTAS
BR = BEDROCK
LG = LAGOON
ET = ESTUARIES
CP = COMPOSITE
CT = CARBONATE

- **√** River
- √ Tides
- √ Temp.
- √ Precip.
- ✓ PET

From Carrère et al. (2012), Fekete et al (2002), Hijmans et al. (2005), Mu et al. (2011)

Part 3. Global controls on C storage in mangrove soils

Part 3. Global controls on C storage in mangrove soils

IOP Publishing Environmental Research Letters

Environ. Res. Lett. 9 (2014) 104013 (9pp)

doi:10.1088/1748-9326/9/10/104013

A global predictive model of carbon in mangrove soils

Sunny L Jardine¹ and Juha V Siikamäki²

Part 3. Global controls on C storage in mangrove soils

nature ARTICLES climate change PUBLISHED ONLINE: 26 JUNE 2017 | DOI: 10.1038/NCLIMATE3326

Global patterns in mangrove soil carbon stocks and losses

Atwood et al. (2017)

Part 3. Global controls on C storage in mangrove soils

College of the Coast & Environment

Global controls on carbon storage in mangrove soils

- Part 1. A little bit of context and concept
- **Part 2.** Brief account on the methods
- Part 3. Global controls on C storage in mangrove soils
- Part 4. Wrapping up

• CES control C:N:P stoichiometry and SOC stocks in mangrove soils at the global scale;

• CES control C:N:P stoichiometry and SOC stocks in mangrove soils at the global scale;

Mangrove SOC stocks increases from river-dominated (~190 Mg C ha⁻¹) to carbonate, peat-dominated settings (~550 Mg C ha⁻¹);

• SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings, and overestimated by up to 86% (ca. 400 Mg ha-1) in deltaic coastlines;

• SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings, and overestimated by up to 86% (ca. 400 Mg ha-1) in deltaic coastlines;

• The CES approach improves current global mangrove SOC stock estimates, specially in terms of spatial variability;

Holdridge life zones (1947,1967)

Holdridge life zones (1947,1967)

COASTAL PROCESSES

Holdridge life zones (1947,1967)

COASTAL PROCESSES

CARBON ALLOCATION

College of the Coast & Environment

THANK YOU!!

Andre Rovai arovai1@lsu.edu

References cited

Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. (2017). doi:10.1038/nclimate3326

Boyd, R., Dalrymple, R. & Zaitlin, B. A. Classification of clastic coastal depositional environments. Sediment. Geol. 80, 139–150 (1992).

Carrère, L., Lyard, F., Cancet, M., Guillot, A. & Roblou, L. FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry. in 20 years of progress in radar altimetry (2012).

Dürr, H. H. et al. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries and Coasts 34, 441–458 (2011).

Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. *Global Biogeochem. Cycles* 16, 15-1-15–10 (2002). Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. *Int. J. Climatol.* 25, 1965–1978 (2005).

Jardine, S. L. & Siikamäki, J. V. A global predictive model of carbon in mangrove soils. *Environ. Res. Lett.* 9, 104013 (2014).

Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

Spalding, M., Kainuma, M. & Collins, L.World atlas of mangroves. Earthscan, London. (2011).

Thom, B. G. in Mangrove ecosystems in Australia: structure, function and management (ed. Clough, B. F.) 3–17 (Australian National University Press, 1982).

Twilley, R. R. in Maximum power: the ideas and applications of H. T. Odum (ed. Hall, C. A. S.) 43–62 (University Press of Colorado, 1995).

Woodroffe, C.D. in Tropical Mangrove Ecosystems (eds A.I. Robertson, D.M. Alongi) 7-41 (American Geophysical Union, 1992).

Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 16.1-16.24 (2016).

College of the Coast & Environment

THANK YOU!!

Andre Rovai arovai1@lsu.edu

References cited

Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. (2017). doi:10.1038/nclimate3326

Boyd, R., Dalrymple, R. & Zaitlin, B. A. Classification of clastic coastal depositional environments. Sediment. Geol. 80, 139–150 (1992).

Carrère, L., Lyard, F., Cancet, M., Guillot, A. & Roblou, L. FES 2012: a new global tidal model taking advantage of nearly 20 years of altimetry. in 20 years of progress in radar altimetry (2012).

Dürr, H. H. et al. Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries and Coasts 34, 441–458 (2011).

Fekete, B. M., Vörösmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. *Global Biogeochem. Cycles* 16, 15-1-15–10 (2002).

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

Jardine, S. L. & Siikamäki, J. V. A global predictive model of carbon in mangrove soils. Environ. Res. Lett. 9, 104013 (2014).

Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

Spalding, M., Kainuma, M. & Collins, L.World atlas of mangroves. Earthscan, London. (2011).

Thom, B. G. in Mangrove ecosystems in Australia: structure, function and management (ed. Clough, B. F.) 3–17 (Australian National University Press, 1982).

Twilley, R. R. in Maximum power: the ideas and applications of H. T. Odum (ed. Hall, C. A. S.) 43–62 (University Press of Colorado, 1995).

Woodroffe, C.D. in Tropical Mangrove Ecosystems (eds A.I. Robertson, D.M. Alongi) 7-41 (American Geophysical Union, 1992).

Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 16.1-16.24 (2016).

Figure D1 The relationship of organic matter calculated via loss on ignition to carbon concentration (percent) calculated via dry combustion for mangrove soil samples from the republic of Palau (Kauffman et al. 2011).

Howard et al. (2014) - high oceanic island

